

Version 1.1

SFP-GSX-MM-1310-LC

SFP MODULE 1000FX MMF 1310NM **BUDGET 2KM**

Features

- Up to 1.25Gbps data rate
- 1310nm FP Laser and PIN photo detector
- Duplex LC receptable optical interface compliant
- Single +3.3V power supply
- Hot-pluggable
- Metal enclosure, for lower EMI
- International Class 1 laser safety certified
- Operating temperature range: Industrial: -40°C~+85°C
- **RoHS Compliant**
- DDMI function available with internally calibrated mode
- Up to 2km transmission distance over Multi Mode Fiber (MMF) OM2/OM3

Ordering Information

Part Number	Designation
SFP-GSX-MM-1310-LC	SFP module 1000FX, multimode 1310nm, budget for 2km , connector LC, -40C to +85C

Absolute Maximun Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS
Storage Temperature	TS	-40	85	°C
Power Supply Voltage	Vcc	-0.5	4.0	V
Relative Humidity	RH	5	95	%
Signal Input Voltage		-0.3	Vcc+0.3	V
Received Damage Threshold		+5		dBm

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT
Case Operating Temperature (Industrial)	Тс	-40		85	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Ambient Humidity	На	5		70	%
Supply Current	Icc			280	mA
Data Rate		-	1.25	-	Gbps
Fiber Length 50/125ym core MMF		-	2	-	km

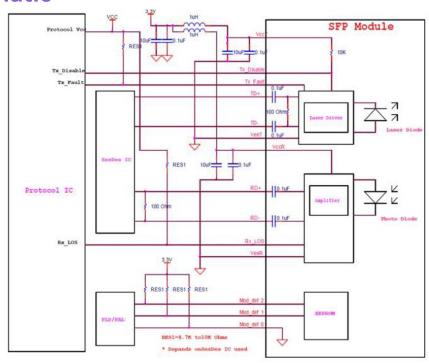
Electrical Characteristics

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Total Supply Current	ICC			A(TX)	mA	A(TX)+B(TX)=280mA
Transmitter Disable Input-High	VDISH	2		VCC+0.3	V	
Transmitter Disable Input-Low	VDISL	0		0.8	V	
Transmitter Fault Input-High	VDISL	2		VCC+0.3	V	
Transmitter Fault Input-Low	VTxFH	0		0.8	V	
Total Supply Current				B(RX)	mA	A(TX)+B(TX)=280mA
Loss of Signal	VOH	2		VCC+0.3	V	
	VOL	0		0.8	V	

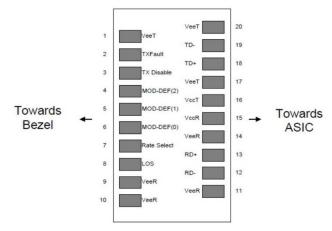
Optical Transmitter Characteristics

PARAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Average Output Power	Pout	-11		-3	dBm	
Operating Wavelength Range	λς	1270	1310	1360	Nm	
Spectrum Bandwidth (RMS)	σ			3.5	nm	
Extinction Ratio	ER	9			dB	2
Differential Line Input Impedance	RIN	90		110	Ohm	
Jitter P-P	tj			0.1	UI	
Optical Tx Output disable	Pdis			-45	dBm	
Output Eye Diagram	Complies with IEEE802.3z (class 1 laser safety)					

Optical Receiver Characteristics


PA	RAMETER	SYMBOL	MIN	TYPICAL	MAX	UNIT	NOTES
Receiver Sensitivity		S			-20	dBm	4
Wave	Wavelength Range		1270		1610	nm	
Receive	Receiver Reflectance				-12	dB	
Input Saturati	Input Saturation Power (Overload)		-3			dBm	4
Loss	Optical De-assert	P _D			-20	dBm	4
2033	Optical Assert	PA	38			иын	7
Loss of Si	Loss of Signal-Deasserted		0.5	2	6	dB	5

Notes:


- 1. The supply current is SFP module's working current.
- 2. For the measurements, the device was driven with 1.25 Gbps data pattern with 27-1 PRBS payload.
- 3. Optical transition time is the time interval required for the rising or falling edge of an optical pulse to transition between the 20% and 80% amplitudes relative to the logical 1 and 0 levels
- 4. Measured with a PRBS 27-1 test pattern, @1.25Gbps, ER=9dB, BER<10-12
- 5. The LOS Hysteresis minimizes 'chatter' on the output line. In principle, Hysteresis alone does not guarantee chatter-free operation.

Circuit Schematic

Pin Descriptions

AS VIEWED THROUGH TOP OF BOARD

Pin	Symbol	Function/Description	Ref.
1	VeeT	Transmitter Ground	1
2	TX Fault	Transmitter Fault Indication	3
3	TX Disable	Transmitter Disable-Module disables on high or open	3
4	MOD-DEF2	Module Definition 2-Two wire serial ID interface	3
5	MOD-DEF1	Module Definition 1-Two wire serial ID interface	3
6	MOD-DEF0	Module Definition 0-Two wire serial ID interface	3
7	Rate Select	Not Connected	3
8	LOS	Loss of Signal	3

CXR T +33 (0) 237 62 87 90 www.cxr.com 17 Rue de l'Ornette 28410 Abondant France contact@cxr.com

9	VeeR	Receiver Ground	1
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Inverse Received Data out	3
13	RD+	Received Data out	3
14	VeeR	Receiver Ground	1
15	VccR	Receiver Power —— +3.3V±5%	2
16	VccT	Transmitter Power —— +3.3 V±5%	2
17	VeeT	Transmitter Ground	1
18	TD+	Transmitter Data In	3
19	TD-	Inverse Transmitter Data In	3
20	VeeT	Transmitter Ground	1

Notes:

- 1. TX Fault is open collector/drain output which should be pulled up externally with a 4.7K 10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to <0.8V.
- 2. TX Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a 4.7K 10K Resistor.

Low (0 – 0.8V): Transmitter on

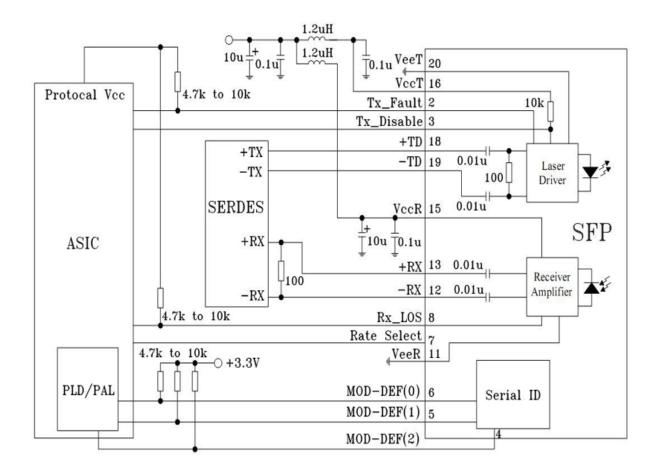
Between (0.8V and 2V): Undefined High

(2.0 - VccT): Transmitter Disabled

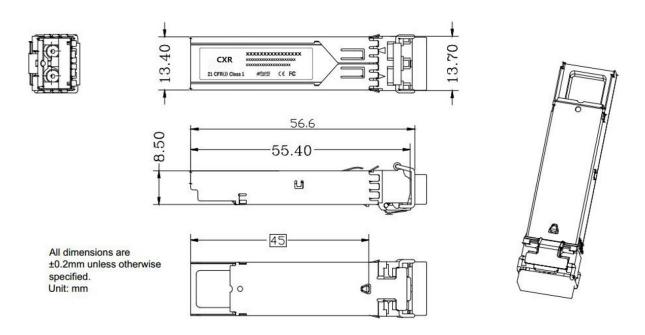
Open: Transmitter Disabled

3. Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7 – 10K Resistor on the host board to supply less than VccT+0.3V or VccR+0.3V.

Mod-Def 0 is grounded by the module to indicate that the module is present.


 $\label{eq:mod-Def1} \mbox{Mod-Def 1 is clock line of two wire serial interface for optional serial ID.}$

Mod-Def 2 is data line of two wire serial interface for optional serial ID.


- 4. LOS (Loss of signal) is an open collector/drain output which should be pulled up externally with a 4.7 10K resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as de fined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.
- 5. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω differential at the user SERDES. The AC coupling is done inside the module and thus not required on the host board.
- 6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. The in-rush current will typically be no more than 30mA above steady state supply current after 500ns.
- 7. TD-/+: These are the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on host board.

Typical application Circuit

Package Outline

CXR T +33 (0) 237 62 87 90 www.cxr.com 17 Rue de l'Ornette 28410 Abondant France contact@cxr.com

Regulatory Compliance

Feature	Test	Method
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1 (>1000V for SPI pins, >2000V for other pins)
Electrostatic Discharge (ESD) Immunity	IEC61000-4-2	Class 2 (>4.0kV)
Electromagnetic Interference (EMI)	CISPR22 ITE Class B FCC Class B CENELEC EN55022 VCCI Class 1	Comply with standard
Immunity	IEC61000-4-3	Comply with standard
Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1, 2	Compatible with Class I laser Prdouct

Note: All information contained in this document is subject to change whitout notice

